Anticholinergic medications are used to manage and treat a wide range of diseases. This activity illustrates the indications, action, and contraindications for anticholinergic drugs as valuable agents in managing cholinergic toxicity, urinary incontinence, Parkinson disease, respiratory disorders, cardiovascular disease, and numerous other diseases. This activity will highlight the mechanism of action, adverse event profile, and other key factors (e.g., off-label uses, dosing, pharmacodynamics, pharmacokinetics, monitoring, relevant interactions) pertinent for members of the interprofessional team in the care of patients with the disorders mentioned above and related conditions.
Objectives:Identify the mechanism of action of anticholinergic drugs.Describe the potential adverse effects f anticholinergic drugs.Review the need for monitoring patients when using anticholinergic drugs.Summarize interprofessional team strategies for improving care coordination and communication to advance anticholinergic drugs and improve outcomes.Access free multiple choice questions on this topic.
Anticholinergic Drugs Classification Pdf Download
Anticholinergic medications (shorthand: "anticholinergics") are drugs that block and inhibit the activity of the neurotransmitter acetylcholine (ACh) at both central and peripheral nervous system synapses.[1] In doing so, these drugs inhibit the actions of the parasympathetic nervous system (the "rest and digest" function of the autonomic nervous system) via selective blockade of ACh from binding to its receptors in neurons. Functions under the control of the parasympathetic nervous system include involuntary actions of smooth muscle located in the GI tract, lungs, urinary tract, and other areas of the body.
Administration of anticholinergic medications varies across the large group of drugs with anticholinergic properties; many are available in oral and intravenous forms. For example, ipratropium, used in treating COPD, can be administered orally or intranasally.[13] Diphenhydramine can be administered orally, intramuscularly (IM), and intravenously (IV).[14] Antipsychotics are available in IM and oral forms, and atropine is available in IV and IM dose forms. Vecuronium and succinylcholine are available intravenously, and both oxybutynin and trihexyphenidyl administration is via the oral route.
The use of anticholinergics requires caution, particularly with the elderly, those with a high anticholinergic burden, and those with conditions susceptible to increased anticholinergic activity such as dementia.[15] Elderly adults are more vulnerable to the effects of anticholinergic medications due to increased permeability of the blood-brain barrier and decreased acetylcholine-induced transmission within the central nervous system.[20] Additionally, many conditions requiring treatment with anticholinergic medications occur in the elderly (e.g., urinary incontinence, COPD). As such, they are more likely to be taking drugs with anticholinergic activity and are at greater risk.[11]
Patients with high anticholinergic burdens are at higher risk for adverse effects and anticholinergic toxicity; providers need to consider the total anticholinergic burden when prescribing new medications. Patients with dementia also have a relative contraindication to the use of anticholinergics. Dementia correlates with reduced acetylcholine in the brain and thus can become worse with the use of anticholinergics.[15] Glaucoma, hyperthyroidism, tachyarrhythmia, and prostate hypertrophy are all conditions negatively impacted by anticholinergic drugs and are prevalent in elderly populations.[15]
Serum anticholinergic assay is one technique used to measure the total anticholinergic burden of all substances within an individual.[4] This technique has allowed for the scaling, from low to high, of anticholinergic activity levels within medications. Previously medications were labeled as either anticholinergic or not; having a more comprehensive scaling of drugs allows providers to weigh better the pros and cons of prescribing medications with anticholinergic activity, especially for high-risk populations, such as the elderly and those with mental illness.[6]
Anticholinergic medications are quite prevalent throughout the healthcare system, and many drugs that are not used explicitly for their anticholinergic properties still have anticholinergic side effects. The entire interprofessional healthcare team, including all clinicians (MDs, DOs, NPs, and PAs), nurses, and pharmacists, need to be well-versed in both the therapeutic and adverse properties of anticholinergic drugs. This is most important regarding the contribution of anticholinergics to adverse events. The team should monitor the overall anticholinergic burden, attempt to limit unnecessary use of anticholinergic medications, and pay special attention to high-risk groups such as the elderly and those receiving treatment for depression and schizophrenia.
The objective of this review was to assess the strengths and limitations of available tools to quantify medication-related anticholinergic burden and sedative load in older adults. We discuss specific limitations and agreements between currently available scales and models and propose a comprehensive table combining drugs categorized as high, moderate, low, or no anticholinergic or sedative activity as excerpted from the selected studies.
After 3163 articles were identified, 13 were included: 11 assigned risk scores to anticholinergic drugs and two to sedative drugs. Considerable variability between anticholinergic scales was observed; scales included between 27 and 548 drugs. We generated a comprehensive table combining the anticholinergic and sedative activities of drugs evaluated and proposed a categorization of these drugs based on available scientific and clinical evidence. Our table combines information about 642 drugs and categorizes 44, 25, 99, and 474 drugs as high, moderate, low, or no anticholinergic and sedative activity, respectively.
Variability and inconsistency exists among scales used to categorize drugs with anticholinergic or sedative burden. In this review, we provide a comprehensive table that proposes a new categorization of these drugs. A longitudinal study will be required to validate the new proposed anticholinergic and sedative burden catalog in an evidence-based manner.
Examples of anticholinergic quantification scales that have been used for the past decade include the Anticholinergic Drug Scale (ADS), the Anticholinergic Cognitive Burden (ACB) scale, and the Anticholinergic Risk Scale (ARS) [14, 21, 22]. Newer scales, such as the ACB for German prescribers, the Brazilian scale, the Korean version of anticholinergic burden scale (KABS), and the modified ACB scale, are derived from one or more of the original scales with expert opinion sought for drugs not included in the original series [23,24,25,26]. These were all developed using varying methods of measuring the anticholinergic or sedative activity of drugs and varying methods of classifying drugs into distinct potency categories [14, 21,22,23,24,25,26]. To date, no international consensus has been reached regarding which scale or tool to use to quantify the simultaneous anticholinergic and/or sedative burden.
To collate information, Durán et al. [27] and Salahudeen et al. [28] published two comprehensive systematic reviews that compared the anticholinergic burden of drugs using anticholinergic risk scales to quantify drug effects. They also evaluated associations between anticholinergic activity and adverse outcomes in older people and provided a composite table and lists of drugs with their anticholinergic potencies. Although both reviews compiled cumulative tables of drug properties, the information presented was extracted directly from original scales for drugs listed with two or more anticholinergic potency scores [27, 28].
In this review, we summarized studies that used a published tool to quantify anticholinergic burden and/or sedative load in older adults to describe the potential advantages, disadvantages, or challenges of using these tools and to present a comprehensive table combining drugs evaluated in selected studies with categorization of drugs as high, moderate, low, or no anticholinergic and sedative activity based on available information. We have named this table the AntiCholinergic and Sedative Burden Catalog (ACSBC), and it will be validated in our future studies.
The DBI was developed and published in 2007 by Hilmer et al. [19] and is a great pharmacological tool that measures the effect of cumulative exposure to both anticholinergic and sedative medications on physical and cognitive function in older adults. Unfortunately, the DBI does not provide a quantitative grading score for drugs with anticholinergic or sedative properties. This system uses a specific drug monograph to determine whether a drug has an anticholinergic or sedative effect by considering pharmacological aspects and side effect profiles. If a drug monograph reports a sedative or anticholinergic property, a DBI will be calculated using the DBI equation (B = D/(δ +D)), where D represents the daily dose taken by the patient and δ the minimum recommended daily dose approved by the US FDA. The total DBI for a drug regimen is calculated as the sum of exposure to each anticholinergic or sedative medication (sum of Bs from the equation). Some other limitations include that (1) all medications with clinically relevant sedative or anticholinergic properties are considered equivalent, (2) the DBI calculation should be based on a consensus list of medicines with anticholinergic and sedative properties that has not been recently updated, and (3) more recently, the authors of the DBI developed the DBI calculator, a software application used by pharmacists. Unfortunately, the DBI calculator website (drugburdenindex.com) is currently only open to Australian healthcare practitioners. Therefore, although the DBI is a scale developed to measure exposure to anticholinergic drugs and sedatives, it cannot be compared with other scales given the different way in which the score is calculated. 2ff7e9595c
Kommentare